

A Multi-Scale Ensemble-based Framework for Predicting Compound Coastal-Riverine Flooding

Email: fsaleh@stevens.edu

Coastal Hydrology and Surface Processes linked to Air/Sea Modeling– September 25-27, 2017

Introduction

Introduction

Annual total precipitation changes for 1991-2012 compared to the 1901-1960 average

http://nca2014.globalchange.gov/

Introduction

http://nca2014.globalchange.gov/

Growing Population and Economic Assets in Urban Watersheds

Increase in Imperviousness

Increase in Imperviousness

Aging Infrastructure Designed Assuming Climate Stationarity

The American Society of Civil Engineers recently awarded dam infrastructure in the United States a grade of "D"

Advancements in Computational Power, Data Collection and Before Modeling Approaches Now

1870

A 5 mega-byte IBM hard drive being loaded onto an airplane in 1956. It weighed more than 2,000 pounds.

@HistoricalPics

Objectives and Study Area

- The overarching objective is to forecast compound flooding (coastal-hydrologic) during extreme flood events in the Hudson River basin
- Evaluate how meteorological uncertainties propagate through hydrologic/coastal/hydrodynamic models and translate to uncertainties in flood inundation extents in urban areas
- Hudson River basin
- Drainage area: 36,000 km²
- Average discharge: 620 m³/s

Objectives and Study Area

- Compound storm surge and hydrologic flooding from Hurricane Irene (2011)
- Freshwater from Irene pushed the salt front beyond the mouth of the river
- One of the rare times when the Hudson River was "fresh" from end to end

Multi Scale Ensemble-based Forecasting Framework

Global and Regional Weather Models

Hydrologic and Coastal Models

SCREENCAST () MATIC

- Telescoping capabilities across scales
- 1,320-core supercomputer
- 72-96 hours lead time forecasts with four cycles per day
- Guide decision making where response strategies take place

Hudson Hydrologic Model Setup

Simulated River Discharge for Hurricane Irene [2011]

Hydrologic parameters optimization using Monte Carlo simulations

Observations obtained from USGS discharge gages

ing									
Ensemble members									
1)									
1)									
1)									
6)									
Deterministic members									
NAMx2,GFS(+e),ECMWF.									

Ensembles Streamflow Prediction

[Hudson River basin Hurricane Irene retrospective forecast using GEFS]

Station & major flood	Tin	ie		8/26	5/2011			8/2	7/2011			8/2	8/2011			8/2	9/2011			8/30)/2011			8/3	1/2011	
threshold	Forecast	hr	0:00	6:00	12:00	18:00	0:00	6:00	12:00	18:00	0:00	6:00	12:00	18:00	0:00	6:00	12:00	18:00	0:00	6:00	12:00	18:00	0:00	6:00	12:00	18:00
Hackensack River at	08/26/2011 to	0	0	0	0	0	0	0	0	0	0	0	14	52	67	62	48	33								
New Milford, NJ	08/27/2011 to	0					0	0	0	0	0	0	62	100	100	95	86	48	5	0	0	0				
(01378500)	08/28/2011 to	0									0	0	43	100	100	100	81	14	0	0	0	0	0	0	0	0
158 m3/s	Observed																									
Passala Plass at Linda	08/26/2011 to	0	0	0	0	0	0	0	0	0	0	0	5	24	67	67	67	67								
Passaic River at Little	08/27/2011 to	0					0	0	0	0	0	0	19	90	100	100	100	100	100	100	100	100				
Palls, NJ (01389500)	08/28/2011 to	0									0	0	5	86	100	100	100	100	100	100	100	100	100	100	100	100
265 m3/s	Observed																									

Color-coded threshold exceedance diagram for hurricane Sandy retrospective forecasts at 6-hr intervals using the major flood threshold

Saleh et al., 2016, A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin, *Journal of Hydrology and* **Earth System Sciences (HESS)**, 20, 2649-2667

Uncertainty Propagation to Hydrologic and Coastal Models [Hurricane Hermine Example]

Example of Coastal Component Ensemble Outputs NYHOPS

- 2016-01-10 Flood Event was
 Predicted 3 days in advance.
- Ensemble usually envelopes the observations well

www.stevens.edu/SFAS

www.stevens.edu/SFAS

Framework Hyper Resolution Applications

Hackensack (523 km²) & Passaic (2420 km²) Rivers

Framework Hyper Resolution Applications

- Combined influence of riverine and tidal components
- Tidal wetlands
- Highly urbanized watershed, more than 2 million people
- Critical facilities (e.g., Teterbero Airport, NJ Transit, Passaic Valley Sewerage Commission)
- Oradell reservoir, storage capacity of 14,000 acre-feet
- Vulnerable to inland and coastal flooding
- <u>Modeling Approach</u>: integrated ocean-meteorology-hydrologyhydraulics model suite

Hurricane Irene [August 2011]

Hurricane Sandy [October, 2012]

Hurricane Sandy Simulation

- 2D-Hydrodynamic model (HEC-RAS 5) forced with hydrologic and coastal boundary conditions
- High resolution surveyed bathymetry (UDEM)
- 1-3 m Lidar (NJMC & USGS, 2014)
- > 600 river surveyed cross sections
- Hydraulic structures
- Tidal wetlands
- Hydrodynamic model resolution ~10 m

Framework Validation [Hurricane Sandy]

High water marks source: http://stn.wim.usgs.gov/FEV/#Sandy STEVENS INSTITUTE of TECHNOLOGY

Ensemble based retrospective forecasts using GEFS meteorological forcing

72-Hours before Sandy

48-Hours before Sandy

24-Hours before Sandy

Retrospective Forecast of Hurricane Sandy

Framework forced with GEFS retrospective meteorological forcing / 72-hours

Ensembles 5th percentile

Ensembles Median

Ensembles 95th percentile

Spatial validation with USGS Reanalysis Flood Extent Map

- **Probability of Detection (POD)** = hits / (hits + misses)
- False-Alarm Ratio (FAR) = false alarms / (hits + false alarms)
- Critical Success Index (CSI) = hits / (hits + misses + false alarms)

	POD	FAR	CSI
Sandy 5%	23%	0.20%	23%
Sandy 50%	74%	1%	74%
Sandy 95%	95%	7%	89%

Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A. F., and Pullen, J.: A Multi-Scale Ensemblebased Framework for Forecasting Compound Coastal-Riverine Flooding: The Hackensack-Passaic Watershed and Newark Bay, *Advances in Water Resources* (in review, Manuscript ID ADWR_2017_243)

Sandy minus 72hrs ensemble: "Expect at least this much water over ground"

Sandy minus 72hrs ensemble: "Most likely inundation over ground"

Sandy minus 72hrs ensemble: "Potential for this much water over ground"

Sandy verified close to the highest percentile (95%) of the -72hr predictions in NY/NJ Harbor when NCEP GEFS reforecasts were used!

Sandy as it happened (based on Observed Levels)

Summary & Future Work

- A multi-scale ensemble based hydrologic-coastal-hydrodynamic framework to predict flooding
- This operational flood forecasting framework provides increased fidelity, yielding insights on short-term flood forecasts, mitigation strategies and best management practices
- Uncertainties cascading from one modeling component to another may impact predictive performance and lead to false flood alerts and missed flooding events
- The practice of using ensembles was advantageous in providing envelopes of uncertainty in simulated inundation extents but it may have limitations when predicting peak timing and magnitude
- Uncertainty in hydrologic modeling approach (e.g. fully distributed model vs. semi-distributed) and modeling parameters vs. uncertainty in meteorological inputs
- Improve reservoirs and groundwater components representation
- Feedbacks from different components (Two way coupling)

Thank You!

Firas Saleh, Ph.D.

- Davidson Laboratory
- Department of Civil, Environmental and Ocean Engineering
- Hoboken NJ, 07030
- Email: fsaleh@stevens.edu