The coupling of river flows with regional ocean models

 Coastal Hydrology and Surface Processes linked to Air/Sea Modeling: 1st community of users workshop, Madeira, Sept. 2017
G. Verri⁽¹⁾, N. Pinardi ^(1,2), D. Gochis⁽³⁾, J. Tribbia⁽³⁾, F. Bryan⁽³⁾, Y. Tseng⁽³⁾, A. Navarra⁽¹⁾, G. Coppini⁽¹⁾

(1) Centro EuroMediterraneo sui Cambiamenti Climatici, Lecce Italy
(2) Alma Mater Studiorum University of Bologna, Italy
(3) NCAR, Boulder, Colorado, USA

Outline

- Open problems & the coupled modeling strategy (Weather, HYDrology and Estuarine dynamics-WHYDE)
- River discharge simulations with WHYDE in Southern Italy: a study case
 - Verri et al. (2017) A meteo-hydrological modeling system for the reconstruction of river runoff: the case of the Ofanto river catchment, Natural Hazards and Earth System Science, in press
- Estuarine dynamics: the Estuarine Box Model (EBM) approach
 - ✓ Apprications to 2 case studies: the highly stratified estuary (Ofanto river) and the partially mixed delta (Po river)
- Coupling of WHYDE with the regional ocean modeling
 - $\checkmark\,$ The impact of the EBM on the shelf dynamics
- Concluding Remarks

The open problems

From: Estuary water exchange from NOAA Ocean Service Education

- Forecasting Regional ocean models have O(1 km) resolution and cannot resolve the estuarine dynamics.
- **Regional ocean models** usually consider directly the **river discharge instead of the real outflow at the estuary mouth.**
- Very often a *zero salinity value is imposed at the river mouth of regional ocean models* generating unrealistic salinity gradients in the coastal and shelf Regions Of Freshwater Influence.

The effects of rivers on the deep ocean salinity

RMSE and BIAS between ARGO floats and model simulation EXP1 – Adriatic rivers on EXP2 – Adriatic rivers off

From:

G. Verri et al. 2017. River runoff influences on the

Central Mediterranean

- **Overturning Circulation.**
- Climate Dynamics

doi: 10.1007/s00382-017-3715-9

River influence on the Overturning Circulation

Do rivers play a significant role in the Meridional Overturning Circulation of the CENTRAL MEDITERRANEAN SEA?

G. Verri et al. 2017 River runoff influences on the Central Mediterranean Overturning Circulation. Climate Dynamics doi: 10.1007/s00382-017-3715-9

 $\overline{\mathbf{n}}$

The coupled water modeling Strategy (WHYDE)

The WHYDE study area: the Ofanto river

WRF+HYDRO results: validation

Estuarine Box Modelling: the theory

- A two-layer rectangular box with constant L_y, H and L_x. Surface and bottom faces are flat and closed. The input forcings are river discharge, inflowing seawater, and tidal current
- The Estuarine Box **governing equations** are tidally-averaged, laterally-averaged, and steady-state.
- The tidally averaged estuarine box model is a good compromise to represent **unresolved estuarine processes in global/regional ocean** models

Estuarine Box Modeling: the 3 models

Knudsen model

CMCC-EBM Mesoscale regional Ocean models

UCONN-NCAR (Sun et al., 2017) NON-MESOSCALE

Estuarine Box Modeling: the governing equations

FIRST STUDY CASE: the Ofanto river, highly stratified

The Ofanto estuary is a "highly stratified" estuary (Fischer et al., 1979):

flow ratio = $\overline{u}_{tide}/\overline{u}_{river}$ =0.01

• EBM geometry: H=5m, $L_v=25m$, $L_x =1km$ which complies with IRSA CNR campaign

SECOND STUDY CASE: the Po river, weakly stratified

- Po EBM length, L_x =20km
- The Po delta is "partially mixed" (Fischer et al., 1979): flow ratio = $\overline{u}_{tide}/\overline{u}_{river}$ =0.43

Intercomparison of EBM solutions for the Ofanto river

Outflowing Salinity and Volume flux : CMCC and UCONN-NCAR EBMs give similar values

Intercomparison of EBM solutions for the Po river

Coupling with the ocean model: the method

River Release representation into a regional ocean model (2km horiz. res.):

- We use the "natural boundary conditions" (Huang, 1993; Kourafalou, 1996; Skliris et al., 2007; Vervatis et al., 2013):
 - river volume flux, R, specified in the vertical velocity boundary condition
 - **salinity**, **S**, at river outlets specified in the salt flux boundary condition (Beron-Vera 1999; Simoncelli et al., 2011)

$$K_{t} \frac{\partial S}{\partial z}\Big|_{z=\eta} = \underbrace{S_{z=\eta}E}_{z=\eta} - P - \underbrace{R}A$$
$$w\Big|_{z=\eta} - \frac{\partial \eta}{\partial t} - u\Big|_{z=\eta} \cdot \nabla_{H}\eta = (E - P - \underbrace{R}A$$

Effects of EBMs on ROFI off the Ofanto estuary

• "Explicit Estuary" Experiment is our benchmark as no observations off the Ofanto outlet

 \bigcirc

Effects of EBMs on ROFI off the Po estuary

• Pictures relate to upwelling favorable wind regime (i.e. Libeccio on 2009/05/22)

Effects of EBMs on ROFI off the Po Delta

and 1m depth

-UCONN EBM +NEMO CMCC EBM +NEMO

Statistics on Salinity	RMSE	BIAS	CORR
CMCC EBM +NEMO	4.45	0.05	0.69
UCONN EBM +NEMO	5.48	-2.06	0.67
CLIM +NEMO	6.67	5.43	0.69

Effects of EBMs on ROFI off the Po Delta

and **1.7m** depth

UCONN EBM +NEMO CMCC EBM +NEMO

Statistics on Salinity	RMSE	BIAS	CORR
CMCC EBM +NEMO	4.05	+0.25	0.61
UCONN EBM +NEMO	4.66	+0.61	0.49
CLIM +NEMO	5.06	+3.53	0.55

Summary and Conclusions

- The WHYDE approach gives realistic estimates of runoff and river plumes on the shelf. A wider implementation of the EBM system for ocean forecasting at global (UCONN-NCAR EBM) and regional scales (CMCC-EBM) has started.
- Three EBMs have been intercompared for different estuaries. CMCC EBM and UCONN-NCAR EBM give similar results for stratified estuaries while *results differ significantly* for *"partially mixed" estuaries.*
- Weaknesses of the present approach: the steady, tidally averaged dynamics of the EBM.
- The next step: better EBM and high-resolution unstructured hydrodynamic modeling from the coasts to upstream river runoff (may be WRF-HYDRO)

- G. Verri et al., *In prep.* The estuarine dynamics for ocean modelling: a method to solve the subtidal estuarine dynamics and to interface river release with regional ocean models
- G. Verri, N. Pinardi, P. Oddo, S.A. Ciliberti, G. Coppini, 2017. River runoff influences on the Central Mediterranean Overturning Circulation. *Climate Dynamics 1-29* DOI: 10.1007/s00382-017-3715-9
- G. Verri, N. Pinardi, D. Gochis, J. Tribbia, A. Navarra, G. Coppini, and T. Vukicevic, 2017. A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment. *Nat. Hazards Earth Syst. Sci. Accepted In Press.*, DOI:10.5194/nhess-2017-102