Convective Initiation Sensitivity to the Presence of An Oceanic Barrier Layer

Sue Chen1, Jerome Schmidt1, Maria Flatau1, James Richman2, Tommy Jensen2

1Naval Research Laboratory, Monterey, California
2Naval Research Laboratory, Stennis Space Center, Mississippi

Photo: Curtesy of N.-H. Chi
Motivation:

Stems from the CINDY/DYNAMO hypothesis III which states: “The barrier-layer, wind- and shear-driven mixing, shallow thermocline, and mixing-layer entrainment all play essential roles in the MJO initiation over the Indian Ocean by controlling the upper-ocean heat content and sea surface temperature, and thereby surface flux feedback”
Air-Ocean-Wave-ICE-LSM-Hydro Coupled COAMPS Forecast and Data Assimilation System

ESMF/NUOPC

User configurable 6 or 12 hr atmosphere update cycle

NAVDAS

- Atmos OBS
 - Atmosphere Setup
 - NAVGEM
 - GALWEN-LIS
 - ATMOSPHERE BC (ANALYSIS)

NCODA

- NCODA QC
 - Database:
 - SST, SSH, ICE, PROF, SHIP, GLDR
- Ocean OBS
 - GLOBE WVS Climo
 - Obs, remote sensing, text

COAMPS®

- CICE
- Hydrology
- LSM
- BOB
- WAVE Setup
- gWW3
- SWAN/WW3
- Ocean Setup
- NCOM/ROMS

DATABASE

- GDEM MODAS
- DBDBV DBDB2 DBDB2
- OSUTide Rivers

NCODA QC

- SST, SSH, ICE, PROF, SHIP, GLDR

Ocean OBS

- NAVGEM
- GALWEN-LIS
- ATMOSPHERE BC (ANALYSIS)
Coupled Data Assimilation System
(COAMPS, NAVDAS, and NCODA)

- GOFS
- NAVGEM
- gNCOM Cut Out
- Ocean BC & BKG
- NCODA
- Atmospheric BC
- NAVDAS
- Two-way Coupled COAMPS

6/12 hour update cycle

- 00 UTC
- 6 UTC
- 12 UTC
- 18 UTC

- Ocean BKG
- Atmospheric BC
- NAVDAS
- Two-way Coupled COAMPS
- NCODA
- gNCOM Cut Out
- Ocean BC & BKG
- Atmospheric BC
- NAVDAS
- Two-way Coupled COAMPS
- NCODA
- Atmospheric BC
- NAVDAS
- Two-way Coupled COAMPS
Coupled Ocean/Atmosphere Mesoscale Convective System (COAMPS®)

Table 1 atmos-CICE exchange fields
1. Land surface type
2. Sea level pressure
3. Surface wind U (10m)
4. Surface wind V (10m)
5. Air temp (2m)
6. Water vapor mixing ratio (2m)
7. Surface downward short wave flux
8. Surface downward longwave flux
9. Surface total precipitation
10. Relative humidity (2m) *
11. Surface net shortwave flux *
12. Surface net longwave flux *
13. Surface albedo *
14. Ground surface temperature (i.e., sea surface temperature)*
15. Surface latent heat flux *
16. Surface sensible heat flux *
17. Surface stress *
* Variables may not be actually needed, but are included

9/27/2017 Coastal Hydrology and Surface Processes linked to Air/Sea Modeling: 1st community of users workshop, Madeira, Portugal
Chi et al. 2014, JGR ocean

Coastal Hydrology and Surface Processes linked to Air/Sea Modeling: 1st community of users workshop, Madeira, Portugal
Hypothesis:

• Convective initiation is sensitive to the presence and the strength of an oceanic barrier layer
COAMPS Idealized Model Configuration

• Unstable atmospheric mean sounding from Gan
• Quiescent initial ocean (no initial currents)
• Initial ocean temperature and salinity profile from the DYNAMO mooring
• Model horizontal resolution - 1 km
• Model atmosphere is perturbed with 256 warm thermals that is 12 km wide and 2 km deep
• Simulation period: 38 h
• Control simulation: uncoupled
 • EXP1: coupled, ocean initial state from the 30 Oct T & S, barrier layer depth ~ 24 m
 • EXP2: As in EXP1, except S from 13 Dec, barrier layer depth ~ 56 m
• Horizontal homogenous initial SST for all three experiments: 29.8 °C
Mean Gan soundings prior to MJO1, MJO2, and MJO3 initiation
Mean Gan U and V Profiles Prior to MJO1, MJO2, and MJO3 Initiation
COAMPS Initial Ocean T&S Profiles

Temperature (°C): D1

Salinity (PSU): D1

Depth (m)

Temperature

Salinity

Z

ML

Z

ML

Z

iTL

Z

 thinner BLPE

Z

 thinner BLPE

Z

iTL
38 h: 2 pm LT, uncoupled, maximum rain rate: 53 mm/h
38 h: 2 pm LT, coupled, thin BL, maximum rain rate: 37 mm/h
The convection in the thick BL experiment is stronger and the rain is heavier than the thin BL and the uncoupled experiments.
Atmospheric Moisture Change

38 h: Thin BL, max PW = 76 mm, mean PW = 61.5 mm

38 h: Uncoupled, PW max = 79 mm, PW mean = 61.7 mm

Initial PW is 62.4 mm

38 h: Thick BL, PW max = 80 mm, PW mean = 61.6 mm

- All three experiments remove the atmospheric moisture from rain fallout
- The thick BL experiment has the highest local increase of PW value compared to the other two experiments
SST Change

24 h: 11 pm, thin BL
24 h: 11 pm, thick BL

32 h: 5 am thin BL
32 h: 5 am thick BL

- SST in the thick BL experiment remains 0.5°C warmer than the thin BL experiment at nighttime.
Surface Salinity Change: Rain+Evaporation

- The surface salinity variability for the thick BL experiment is larger than the thin BL experiment
Thick BL Surface Salinity Movie
• The thick BL experiment has the strongest convection initiated few hours before the other two experiments.
Summary

- High-resolution coupled idealized COAMPS simulations are conducted to systematically examine the sensitivity of convective development in the absence of large-scale synoptic forcing to the presence of an oceanic barrier layer (BL) and the strength of BL.
Summary

- High-resolution coupled idealized COAMPS simulations are conducted to systematically exam the sensitivity of convective development in the absence of large-scale synoptic forcing to the presence of an oceanic barrier layer (BL) and the strength of BL.

- The thick BL experiment has the highest local increase of PW value compared to the other two experiments due to stronger convective transport of moisture.
Summary

- High-resolution coupled idealized COAMPS simulations are conducted to systematically examine the sensitivity of convective development in the absence of large-scale synoptic forcing to the presence of an oceanic barrier layer (BL) and the strength of BL.
- The thick BL experiment has the highest local increase of PW value compared to the other two experiments due to stronger convective transport of moisture.
- The surface salinity variability for the thick BL experiment is larger than the thin BL experiment.
Summary

- High-resolution coupled idealized COAMPS simulations are conducted to systematically exam the sensitivity of convective development in the absence of large-scale synoptic forcing to the presence of an oceanic barrier layer (BL) and the strength of BL.
- The thick BL experiment has the highest local increase of PW value compared to the other two experiments due to stronger convective transport of moisture.
- The surface salinity variability for the thick BL experiment is larger than the thin BL experiment.
- The thick BL experiment has a 0.1 mm increase of PW after 38 h forecast compared to the thin BL experiment.
Summary

- High-resolution coupled idealized COAMPS simulations are conducted to systematically examine the sensitivity of convective development in the absence of large-scale synoptic forcing to the presence of an oceanic barrier layer (BL) and the strength of BL.

- The thick BL experiment has the highest local increase of PW value compared to the other two experiments due to stronger convective transport of moisture.

- The surface salinity variability for the thick BL experiment is larger than the thin BL experiment.

- The thick BL experiment has a 0.1 mm increase of PW after 38 h forecast compared to the thin BL experiment.

- The time-longitude plots of the rain showed the initiation of strong convection occurs ~ 2 h earlier than the thin BL experiment.
Hypothesis is validated

- Convective initiation is sensitive to the presence and the strength of an oceanic barrier layer
Future Work

- Extend the simulation time to exam the barrier layer influence on the convective cloud and radiative equilibrium
Future Work

- Extend the simulation time to examine the barrier layer influence on the convective cloud and radiative equilibrium.
- Expand the current work to include more parameter space such as different large-scale environment, barrier layer strength, and ocean mixing.