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Land-Atmosphere Coupling Investigations

Monsoon

Daily Rainfall Patterns: 1100

" Clouds and rainfall form .
earliest over high topography, forni Prain
rainfall is light

=  Storms grow and organize
later in the afternoon,
growing taller and with
heavier rainfall

= lLarge, organized
thunderstorms exist in the
evenings over low elevation
areas

= Light, shallow rainfall occurs
at night

=  Growth of storms appears to
be linked to moisture
availability, and other
dynamics

high specific humidity




Basic Principles on Coupled Hydrometeorological Processes

Foundational questions...

* How do changes in soil moisture
impact land-atmosphere
exchange in the N. American
Monsoon region?

For later...

* How do routing processes in
complex terrain influence these
circulations?

e |s there a detectable difference
from an NWP/QPF perspective?




Basic Principles on Coupled Hydrometeorological Processes and
Research Question

WRF-Hydro System Description

Uncoupled model deployment and evaluation

Fully-coupled land-atmosphere coupling investigations



Basic Principles on Coupled Hydrometeorological Processes

* Thermally-driven circulations....under ’light-wind’ conditions...

HEIGHT

1~15m.

Images courtesy Zardi and Whiteman, 2012




Basic Principles on Coupled Hydrometeorological Processes

e Surface Energy Flux Partitioning...

Rn —G —S+A=H+LE (units: Watts / m”2)
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Basic Principles on Coupled Hydrometeorological Processes

* Thermally-driven circulations....formalization
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A community-based, supported coupling architecture designed to provide:

1.  An extensible multi-scale & multi-physics land-atmosphere modeling capability for conservative, coupled and
uncoupled assimilation & prediction of major water cycle components such as precipitation, soil moisture,
snowpack, groundwater, streamflow, inundation

2. ‘Accurate’ and ‘reliable’ streamflow prediction across scales (from 0-order headwater catchments to
continental river basins & minutes to seasons)

3. Research modeling testbed for evaluating and improving physical process and coupling representations

100’s m -1’s km 1-10’s m

Can be run fully-coupled with WRF or in an offline mode, driven by prescribed
meteorological data

Website: https://www.ral.ucar.edu/projects/wrf hydro



https://www.ral.ucar.edu/projects/wrf_hydro

WRF-Hydro system description

Column Land Surface Models:  Output Variables:
Noah/NoahMP/SAC-HTET* Evapotranspiration
. Soil moisture/Soil Ice

I 2oy &S5 Snowpack/snowmelt

’ Runoff

Radiation Exchange

Energy Fluxes

Plant Water Stress

Channel & Reservoir
Routing Models:
Hydrologic and Hydraulic

- 1-w pling or Output Variables:
_Surface Runoff y coupling St rea mﬂOW
River Stage

Flow Velocity
Reservoir Storage
& Discharge

Terrain Routing Models:
Overland, subsurface flow

Output Variables:
Stream Inflow, Surface Water Depth, Groundwater Depth, Soil Moisture




Basic Principles on Coupled Hydrometeorological Processes

* Organization of spatial variability

Flow Along Soil-Bedrock Interface
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Basic Principles on Coupled Hydrometeorological Processes

* Organization of spatial variability

DEM: Water table Soil moisture Stream channel
100 m depth (m) inflows

Legend

am_top100m2
Value

Northern Alps :
Germany
Domain:
~140x220 km



Experimental Approach:

e Set up, calibrate and evaluate ‘uncoupled’ modeling components
only

» Establish fidelity vs. available terrestrial hydrologic observations

* Flux tower data
e MODIS LST and derived ET

e Set up experimental coupled model simulations:

* Examine sensitivity of atmospheric structure to surface hydrologic
initialization



WRF-Hydro Implementation in NW Mexico:

* Initial implementation and calibration...
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WRF-Hydro Implementation in NW Mexico:

* Initial implementation and evaluation of 1D NoahMP against tower
flux data...
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WRF-Hydro Implementation in NW Mexico:
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WRF-Hydro Implementation in NW Mexico:

* Initial implementation and evaluation of distributed WRF-Hydro ET

against MODIS ET and LST products...
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Land-Atmosphere Coupling Investigations

* Initial implementation and evaluation of distributed WRF-Hydro ET
against MODIS ET and LST products...
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Coupled WRF/WRF-Hydro Implementation

Physics Categories

Selected Option

Reference

Microphysics
Longwave and Shortwave
Radiation

Land Surface Model
Planetary Boundary Layer
Cumulus Parameterization

Thompson

Revised MM5 surface layer
Noah-MP

Yonsei University Scheme
Kain-Fritsch

Thompson et al. (2008)
Paulson (1970); Zhang and Anthes
(1982); Beljaars (1994)

Niu et al. (2011); Yang et al. (2011)
Hong et al. (2006)
Kain (2004)

 WRF Model Setup:

* 44 vertical levels (telescoping)
* Model top at 100 hPa

3-nest domain (12, 4, 1 km)
Lateral boundaries specified by NARR (32km)
4, 72 hr precipitation event periods:

e 2004 (July 12-15 and July 23-24) and 2013 (July 15-18 and August

2-5)

WRF-Hydro NoahMP Setup:

e 1km NoahMP
* 100m terrain routing
* Daily specification of green vegetation fraction and LAI from

MODIS

Xiang et al., 2017, Atmosfera



Coupled WRF/WRF-Hydro Implementation
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Coupled WRF/WRF-Hydro Implementation

Coupled WRF/WRF-Hydro

modeled precipitation is
more episodic with
stronger pulses than
NLDAS...

Results in lower overall
ET and higher soil
moisture variability

Xiang et al., 2017, Atmosfera
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Coupled WRF/WRF-Hydro Implementation

Four initialization experiments were conducted for each storm period by
perturbing the initial soil moisture and vegetation conditions. Only soil moisture
perturbation experiments discussed here.

Baseline Sim. Exp. 1

32°N 32°N

31°N

31°N < &
P

30°N

112°W 111°30'W 111°W 110°30'W 110°W 109°30'W 109°W 108°30'W 112°W 111°30'W 111°W 110°30'W 110°W 109°30'W 109°W 108°30'W 112°W 111°30'W 111°W 110°30'W 110°W 109°30'W 109°W 108°30'W

Fig. Initial soil moisture (m3/m3) distributions at 00 UTC July 12, 2004 for the baseline simulation and for experiments
1 (Uniform soil moisture, 0.2 m3/m3) and 2 (Spatially variable soil moisture).

Xiang et al., 2017, Atmosfera



Coupled WRF/WRF-Hydro Implementation

* Analysis metrics:
 surface energy balance,

* relationship between net radiation at the surface and boundary
layer conditions

* linkage among boundary layer states and reci][)itation generation
through linear regression parameters (and coefficients of
determination, R?) and correlation coefficients (CC)

* basin-averaged surface soil moisture (J,)
 surface albedo (a)

* surface temperature (T,)

e evaporative fraction (EF)

* net radiation (R,)

e atmospheric conditions are inspected using:
* basin-averaged planetary boundary layer depth (PBLH)
* wet bulb temperature (7,,)
* |ifting condensation level (LCL)
* convective available potential energy (CAPE)

Xiang et al., 2017, Atmosfera



Land-Atmosphere Coupling Investigations

s EFTTrTTas
-3388BE5EEEENEY

Exp. 1 (USM) Exp. 2 (SSM)

* Feedback to precipitation is |--¥3
complicated but appreciable
between experiments where .. |4
terrain-induced flux variability :
drives differences in modeled -
monsoon rainfall

112°W 111°30'W 111°W 110°30°W 110°W 106°30'W 108°W 108°30'W

T12°W 111°30'W 111°W 110°30°'W 110°W 109°30'W 106°W 108°30'W

o ] _uniform (USM) and spatial varying initial soil moisture condition
* However...deciding which one is (sswm)

‘right’ can be tricky....

Xiang et al., 2017, Atmosfera



Land-Atmosphere Coupling Investigations

O Exp.1(USM) O Exp.2(SSM)

O Exp.3(UVEG) O Exp.4(SVEG) |

* Soil moisture correlates
more strongly with
albedo and evaporative
fraction than does
vegetation suggesting
fundamental control in
coupling here is moisture
availability
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Xiang et al., 2017, Atmosfera



Land-Atmosphere Coupling Investigations

* Increases in wet bulb
temperature associated
with wetter soils are
positively correlated with
more CAPE and lower LCLs

* Maps of differences in
CAPE between
experiments and baseline
show increases in CAPE
using the updated
(wetter) soll moisture
Initializations

e Combined Factors imply a
more energetic boundary
IaYer when soils are wet
following rains in the NAM
regions
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Xiang et al., 2017, Atmosfera
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Land-Atmosphere Coupling Investigations

e QOverall, soil moisture
initialization experiments point Exp. 1 (USM) Exp. 2 (SSM)
to a positive feedback between ? A . e 4
soil moisture and precipitation =¥ “ 2
in the NWM region...

* Implications:
* Sufficient energy to drive
convective dynamics

e System is more ‘moisture limited’
than ‘energy limited’

T12°W 111°30'W 111°W 110°30'W 110°W 109°30'W 106°W 108°30'W 112°W 111°30'W 111°W 110°30°W 110°W 106°30'W 108°W 108°30'W

Change in precipitation compared with baseline model run:
uniform (USM) and spatial varying initial soil moisture condition
(SSMm)

Xiang et al., 2017, Atmosfera



Land-Atmosphere Coupling: Conclusions

(3} Soil Moisture (&) ]
l
{ ¥
Albedo () l Evaporative fraction (EF) ]
e Eltahir (1998) framework suggest 0 | 1
great soil moisture provides both Concentration of Surface |
. water vapor in the temperature (T,)
a small local source for moisture boundiry kver :
but also a mechanism that i l . |
partitions incoming radiation into Solar radiation | Terrestrial radiation |
terms that allow for more ' I '
energetic PBL: Net radiation (R, |
* Decrease in albedo/increase in net radiation l A
. Boundary layer
* Increase in wet bulb temp Total turbulence flux (F) l depth (PBLH)

* Increases in CAPE | |
* Lowering of LCL/PBL hgt

Wet bulb ]
temperature (T,:)

* Greater precipitation

Lift condensation
level (LCL) l

l

Precipitation (P) ]

Xiang et al., 2017, Atmosfera



* Increased soil moisture in N. American Monsoon region is
associated with greater surface available energy, a more ‘energetic
PBL and greater precipitation

* Next steps: Isolate the role, if any, of terrain routing processes in
land-atmosphere exchange and N. American Monsoon
precipitation



Thanks!

NWM:

http://water.noaa.gov/about/nwm
WRF-Hydro:
https://www.ral.ucar.edu/projects/wrf hydro
Rwrfhydro Evaluation Tools:
https://github.com/mccreigh/rwrfhydro
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http://water.noaa.gov/about/nwm
https://www.ral.ucar.edu/projects/wrf_hydro
https://github.com/mccreigh/rwrfhydro

